


Cambridge IGCSE™

CANDIDATE
NAME
CENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

CO-ORDINATED SCIENCES

0654/43

Paper 4 Theory (Extended)

May/June 2025

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.
- Take the weight of 1.0 kg to be 9.8 N (acceleration of free fall = 9.8 m/s²).

INFORMATION

- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has **28** pages. Any blank pages are indicated.

1 Fig. 1.1 shows the circulatory system of a fish.

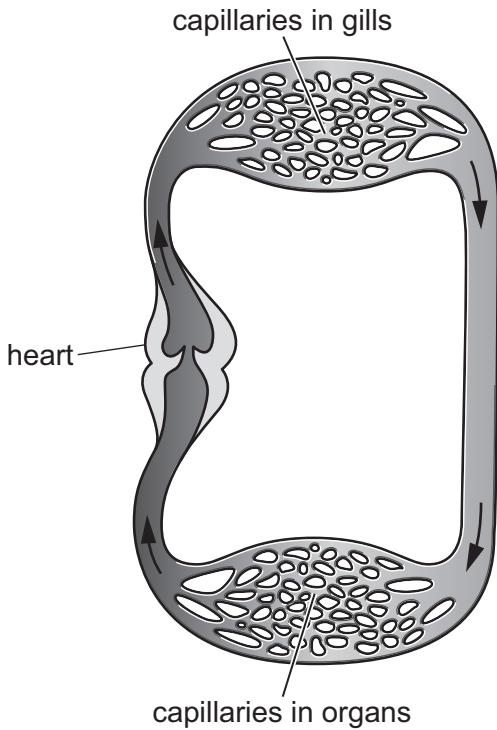


Fig. 1.1

(a) Put an **X** on Fig. 1.1 to show **one** area where oxygenated blood is flowing. [1]

(b) Mammals have a double circulation of blood.

Explain the advantages of a **double** circulation compared to the circulation in a fish.

.....

.....

.....

.....

.....

[3]

(c) Capillaries have thin walls.

(i) Tick (✓) **one** box to identify which statement explains why capillaries have thin walls.

to allow blood to flow out

to allow movement of substances in and out of blood

to make space for more tissues in organs

to increase the rate of blood flow

[1]

(ii) Fish gills have a good blood supply as they have many capillaries with thin walls.

Suggest **one** other feature that makes the gills a good gas exchange surface.

.....
.....

[1]

(d) The healthy range for platelets in human blood is between 150 000 and 400 000 platelets per mm^3 .

An 8 mm^3 sample is taken from a patient.

The sample contains 1.022×10^6 platelets.

(i) Calculate the number of platelets per mm^3 in the sample.

..... platelets per mm^3 [1]

(ii) Suggest how this number of platelets may affect the patient if they cut themselves.

.....
.....
.....
.....
.....

[3]

[Total: 10]

2 A patient has been told by his doctor to exercise to reduce his risk of coronary heart disease.

During exercise, the patient notices these effects:

- increased heart rate
- increased breathing rate and depth
- hotter body temperature.

(a) (i) Explain the effects of exercise on heart rate and breathing.

.....
.....
.....
.....
.....
..... [3]

(ii) Describe how the patient's body responds to the increase in body temperature.

.....
.....
.....
.....
.....
..... [3]

(b) The patient's doctor also suggests using a type of drug called statins as well as exercise.

(i) State what is meant by the term drug.

.....
.....
..... [2]

(ii) State **one** other way the patient may reduce his risk of coronary heart disease.

.....
..... [1]

[Total: 9]

BLANK PAGE

DO NOT WRITE IN THIS MARGIN

3 Fig. 3.1 is a diagram of the human male reproductive system.

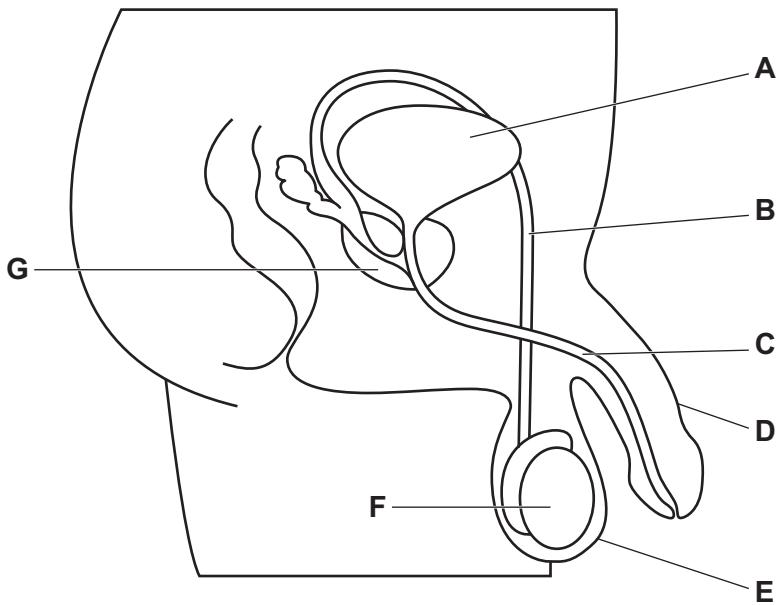


Fig. 3.1

(a) Using letters A–G in Fig. 3.1, identify the:

urethra

prostate gland

[2]

(b) Complete Table 3.1 showing the adaptive features of sperm cells.

Table 3.1

feature	function
flagellum
mitochondria
.....	contains enzymes to digest the jelly coat on the egg

[3]

(c) Sperm cells contain a single set of chromosomes in their nucleus.

(i) State what is meant by a chromosome.

.....
.....

[1]

(ii) State the name of the type of nucleus that only contains a single set of chromosomes.

.....

[1]

(d) Gonorrhoea is a sexually transmitted infection caused by a bacterium.

(i) Complete the sentences about the way doctors treat gonorrhoea bacterial infections.

Choose words from the list.

antibodies	antibiotics	antigens
denaturation	mutations	vaccinations

Doctors always use to treat gonorrhoea infections.

This increases the risk of bacteria with being selected for and forming a population of resistant bacteria.

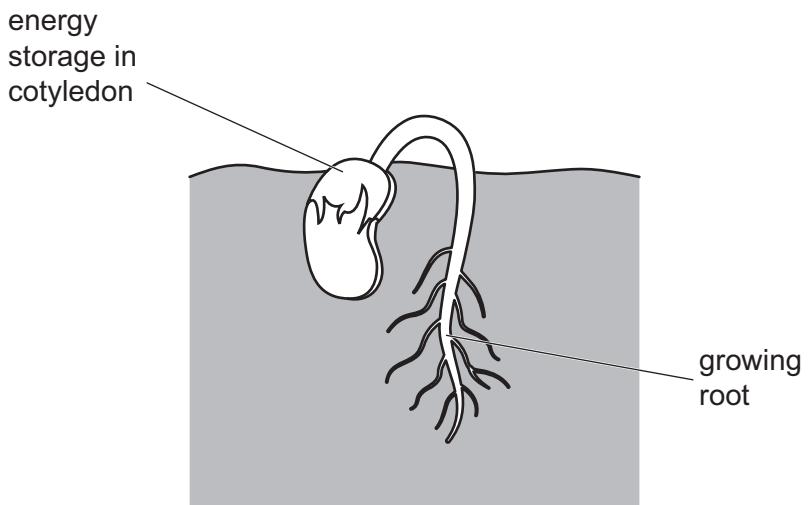
[2]

(ii) Describe **two** ways to control the spread of gonorrhoea.

1

.....

2


.....

[2]

[Total: 11]

4 (a) Fig. 4.1 is a diagram of a germinating bean seed.

Fig. 4.1

Sucrose and amino acids are moved from storage in the cotyledons to the growing roots by translocation.

On Fig. 4.1, draw **two** label lines and correct labels to identify the part of the plant acting as the:

- **source**
- **sink**.

[2]

(b) Germinating seeds contain an enzyme called amylase.

Explain why seeds need amylase to grow.

.....

 [3]

(c) There are two types of amylase: α -amylase and β -amylase.

The pancreas in humans secretes α -amylase.

Bacteria secrete β -amylase to digest food outside bacteria cells.

Fig. 4.2 is a graph showing the activity of the different amylase enzymes at different pH.

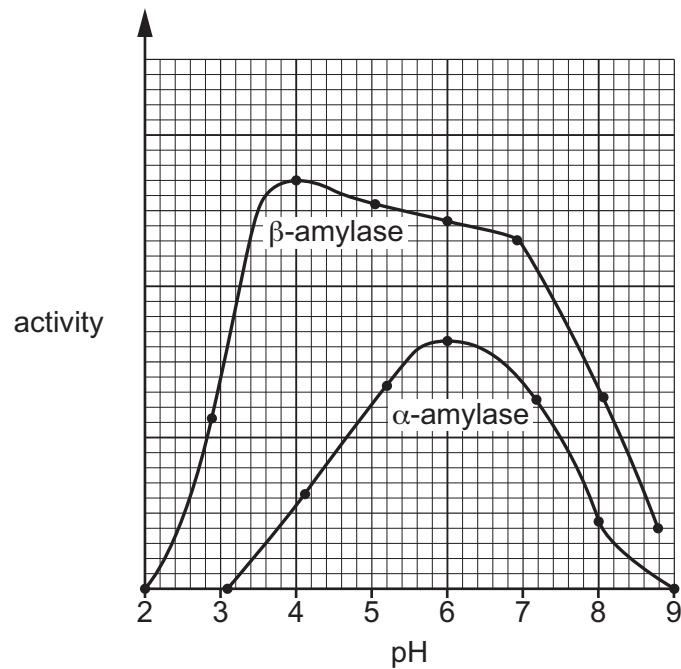


Fig. 4.2

(i) β -amylase is active over a wider range of pH than α -amylase.

Outline **other** differences between the activity of α -amylase and β -amylase at different pH values as shown in Fig. 4.2.

.....

 [2]

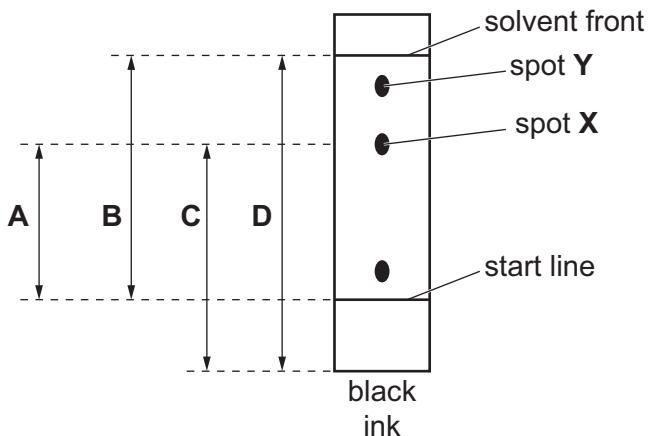
(ii) Explain the activity of α -amylase at pH 9.

.....

 [2]

(iii) Suggest why β -amylase needs to be active over a wider range of pH than α -amylase.

.....
 [1]



5 A student investigates black ink using paper chromatography.

Fig. 5.1 shows:

- the chromatogram the student obtains
- the measurements the student may make.

measurements

Fig. 5.1

(a) State if black ink is a pure or impure substance.

Use Fig. 5.1 to explain your answer.

statement

explanation

.....

[1]

(b) State which **two** measurements on Fig. 5.1 are needed to calculate the R_f value of spot X.

..... and

[1]

(c) The student calculates the R_f value of spot Y to be 0.80.

The distance travelled by spot Y is 2.8 cm.

Calculate the distance travelled by the solvent.

distance travelled by solvent = cm [2]

(d) Paper chromatography has a stationary phase and a mobile phase.

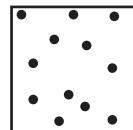
The stationary phase is a solid. The mobile phase is a liquid.

Describe what happens to the **separation** and **motion** of the particles when a solid changes to a liquid.

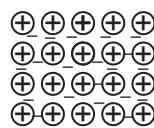
separation

.....
motion

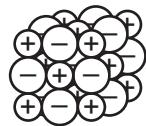
[2]

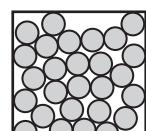

(e) Different substances have different structures.

Draw **one** line from each statement to the structure.


statement

structure


The substance is a gas.


The substance is an ionic solid.

The substance is a solid metal.

The substance is a giant covalent solid.

[4]

[Total: 10]

6 Fig. 6.1 shows the structure of magnesium oxide.

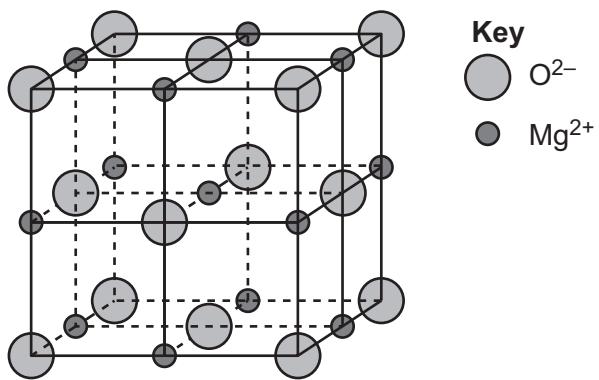


Fig. 6.1

(a) Deduce the formula of magnesium oxide.

formula

[1]

(b) Oxides can be classified as acidic, basic or amphoteric.

Classify magnesium oxide.

Explain your answer.

classification

explanation

[2]

(c) Magnesium is in Group II and period 3 of the Periodic Table.

Determine the electronic configuration of a magnesium atom.

..... [1]

(d) Magnesium occurs naturally in three stable isotopes, ^{24}Mg , ^{25}Mg and ^{26}Mg .

Describe the similarity and the difference between the three isotopes.

similarity

difference

[2]

(e) The compound magnesium sulfate, MgSO_4 , is found in sea water.

Calculate the amount (mol) of magnesium sulfate in a 3.05g sample of magnesium sulfate where all the magnesium atoms are the isotope ^{26}Mg .

[A_r : O, 16; S, 32]

amount (mol) of magnesium sulfate = [3]

(f) A student measures the boiling point of a sample of sea water.

The boiling point is 102 °C.

Describe how the student knows that the sea water is **not** pure water.

..... [1]

[Total: 10]

7 Look at the structures of the carbon compounds shown in Fig. 7.1.

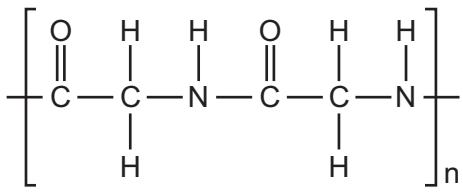
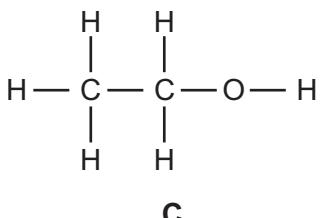
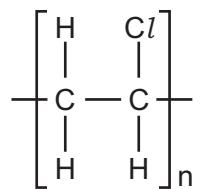
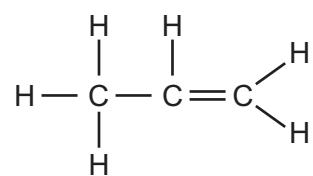





Fig. 7.1

(a) (i) State which compound is a hydrocarbon.

Choose from **A**, **B**, **C** or **D**.

.....

[1]

(ii) State which compound is propene.

Choose from **A**, **B**, **C** or **D**.

.....

[1]

(iii) State which compound is made from the reaction of ethene with steam in the presence of an acid catalyst.

Choose from **A**, **B**, **C** or **D**.

.....

[1]

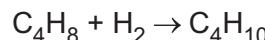
(iv) State which compound is made in a condensation polymerisation reaction.

Choose from **A**, **B**, **C** or **D**.

.....

[1]

(b) Compound **C**, $\text{C}_2\text{H}_5\text{OH}$, completely combusts in oxygen.


Construct the balanced symbol equation for the reaction.

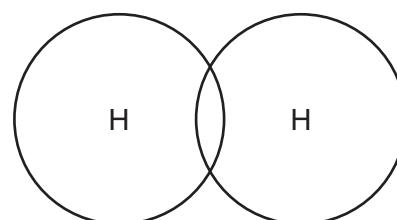
.....

[2]

(c) A mixture containing 11.2g of another carbon compound, C_4H_8 , is allowed to react with 0.6g of hydrogen, H_2 .

Show, by calculation, that C_4H_8 is the limiting reactant.

[A_r : C, 12; H, 1]


C_4H_8 is the limiting reactant because

.....

[3]

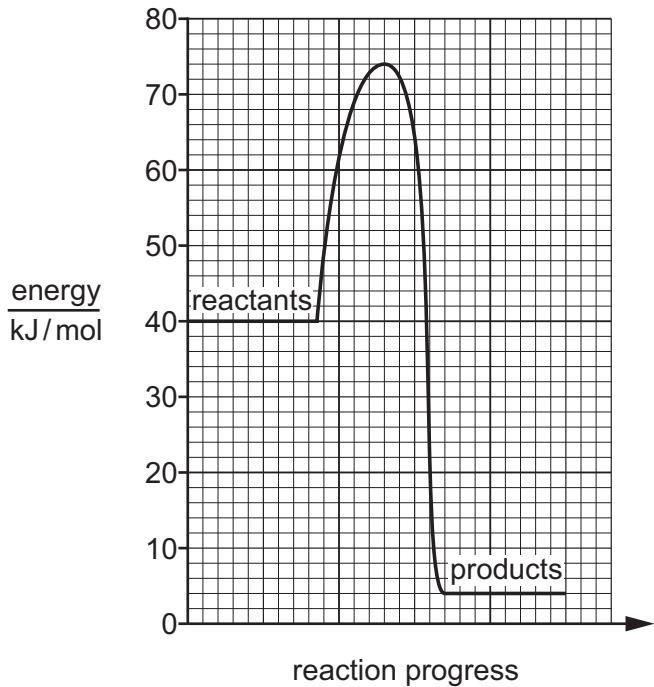
(d) Hydrogen, H_2 , is a simple covalent molecule.

Complete the dot-and-cross diagram to show the bonding in a hydrogen molecule.

[1]

[Total: 10]

8 A student reacts hydrochloric acid with sodium carbonate.


(a) The reaction is exothermic.

State what is meant by an exothermic reaction.

.....
.....

[1]

(b) Fig. 8.1 shows the reaction pathway diagram for the reaction.

Fig. 8.1

(i) State the activation energy for the reaction.

activation energy = kJ/mol [1]

(ii) State the enthalpy change for the reaction.

enthalpy change = kJ/mol [2]

(c) The student repeats the experiment using a catalyst.

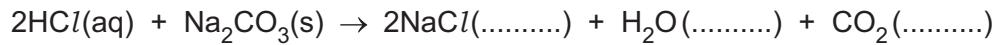
State the effect of using a catalyst on the activation energy for the reaction.

.....

[1]

(d) The student repeats the experiment at a higher temperature.

The reaction is faster.


Explain why, using collision theory.

.....
.....
.....
.....
.....

[3]

(e) The reaction makes sodium chloride solution, water and carbon dioxide.

Complete the state symbols in the balanced chemical equation.

[2]

[Total: 10]

9 (a) (i) Circle **all** the vector quantities.

energy gravitational field strength

temperature time weight

[2]

(ii) Define the term velocity.

.....
..... [2]

(b) Fig. 9.1 shows the speed–time graph for a cyclist travelling along a straight horizontal road.

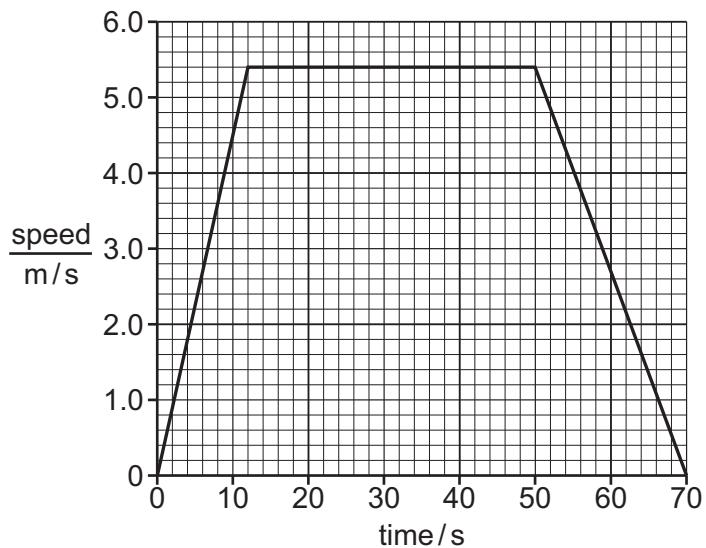


Fig. 9.1

Calculate the acceleration of the cyclist during the first 12 seconds.

acceleration = m/s² [2]

(c) (i) In a crash test, a car experiences a deceleration of 35 m/s^2 .

Calculate the ratio:
$$\frac{\text{deceleration of car}}{\text{acceleration due to gravity}}$$

ratio = [1]

(ii) Before the crash, the car has a velocity of 28 m/s .

The kinetic energy of the car is 470 kJ .

Calculate the mass of the car.

mass = kg [2]

[Total: 9]

10 (a) State how the Big Bang Theory describes the beginning of the Universe.

.....
.....

[2]

(b) The Universe has many stable stars.

Complete the boxes in Fig. 10.1 with the next stages in the life cycle of a very large mass stable star.

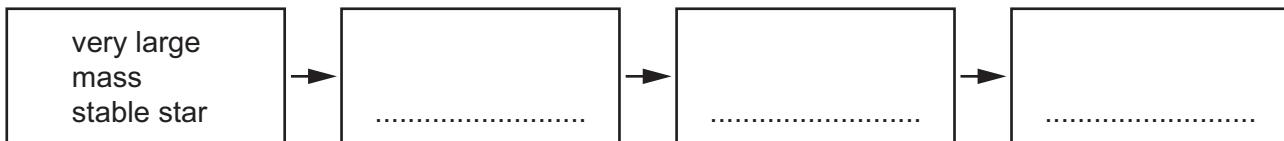


Fig. 10.1

[3]

(c) (i) State where most of the mass of the Solar System is located.

.....

[1]

(ii) The Sun has eight planets orbiting it.

Describe the relationship between the orbital speed and the orbital radius of the planets as orbital radius increases.

.....
.....

[1]

(d) A radioactive source emits two types of radiation.

When no source is present, a radiation detector records 14 counts per minute.

The source is placed 5.0 cm from the radiation detector for all measurements recorded in Table 10.1.

The absorbing material is placed between the source and detector.

Table 10.1

absorbing material	detector reading in counts per minute
none	240
paper	180
5 mm aluminium	181
10 cm lead	22

State which **two** types of ionising radiation are emitted by the source.

Explain your answer.

first type of radiation

explanation

.....

second type of radiation

explanation

.....

[2]

[Total: 9]

11 (a) Fig. 11.1 shows a diagram of a water wave.

On Fig. 11.1, mark the amplitude and the wavelength of the wave using double-headed arrows (\leftrightarrow or \updownarrow).

Label the amplitude **A** and the wavelength **W**.

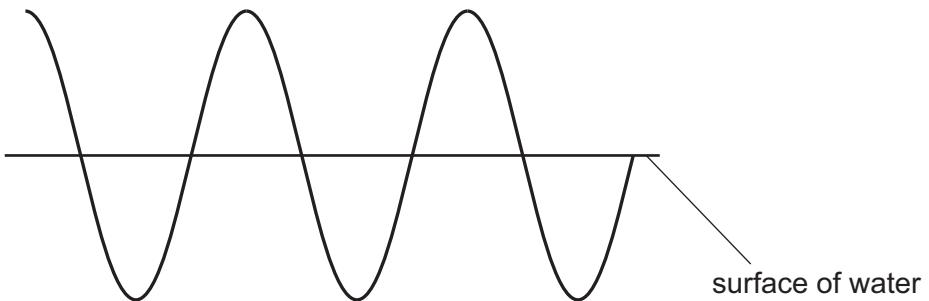


Fig. 11.1

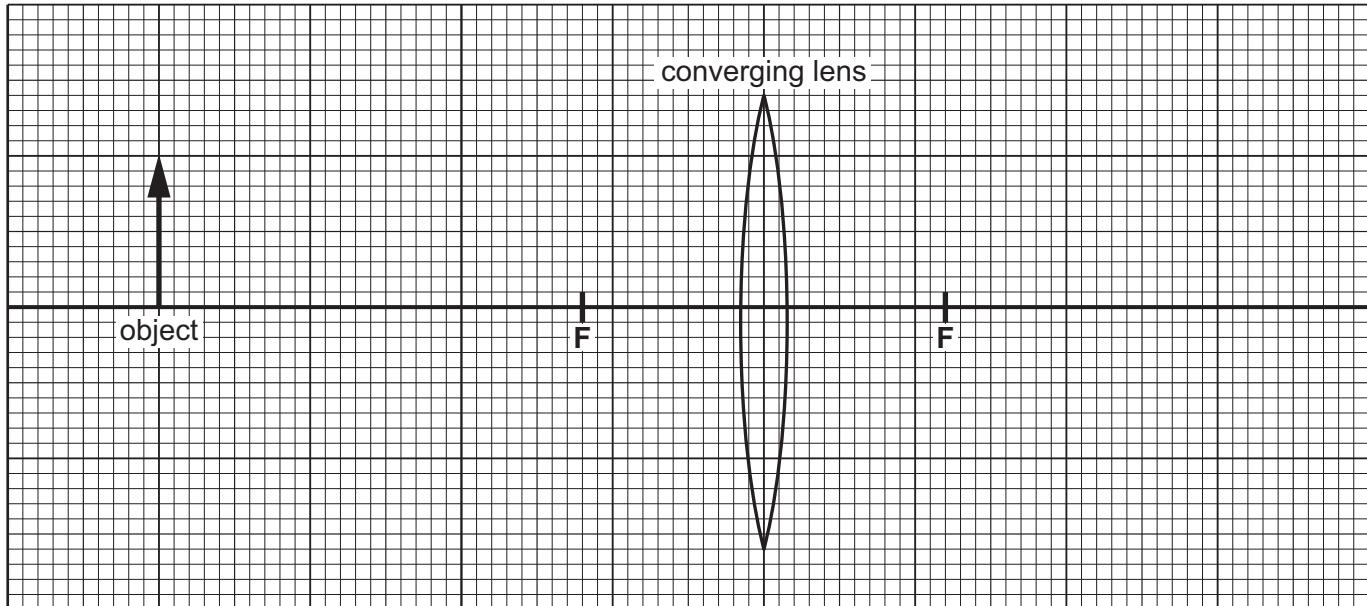
[2]

(b) A water wave has a wavelength of 0.078 m.

The frequency of the wave is 0.50 Hz.

Calculate the wave speed.

wave speed = m/s [2]



DO NOT WRITE IN THIS MARGIN

(c) (i) Lenses refract light.

Complete the ray diagram for the lens in Fig. 11.2 to show the location of the image formed.

Draw the image formed with an arrow.

F = principal focus

Fig. 11.2

[3]

(ii) In another experiment, an object is placed at a distance of less than the focal length from a thin converging lens.

Describe the characteristics of the image formed.

.....
.....

[2]

(d) The Sun transfers energy via infrared waves to the Earth.

The Earth emits infrared radiation into space.

State and explain what happens to the temperature of the Earth during the daytime and during the nighttime.

daytime

.....

nighttime

.....

[3]

[Total: 12]

Turn over

12 (a) Fig. 12.1 shows two identical resistors each of resistance 3.8Ω connected to a cell.

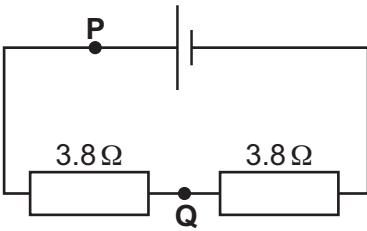


Fig. 12.1

(i) The electromotive force (e.m.f.) of the cell is 1.5 V.

Define e.m.f.

.....
..... [2]

(ii) State the potential difference (p.d.) between points P and Q.

State the unit of your answer.

p.d. = unit [2]

(iii) Calculate the combined resistance of the two resistors.

resistance = Ω [1]

(b) Fig. 12.2 shows a piece of metal wire with a resistance of 40Ω along its length.

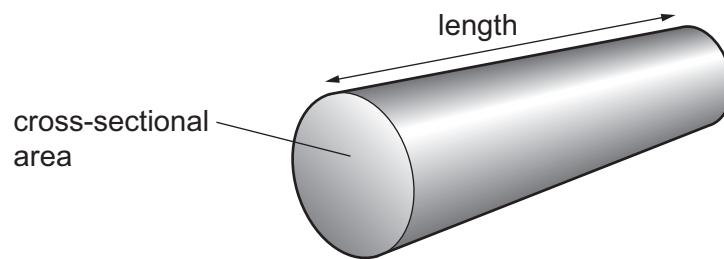


Fig. 12.2

A potential difference is applied across the ends of the wire.

Describe the process of electrical conduction in the wire.

.....
.....
.....
.....
.....

[3]

(c) A second piece of wire of the same material and length as in Fig. 12.2 has double the diameter.

(i) Circle the change, if any, to the cross-sectional area of the wire.

halved

no change

doubled

multiplied by 4

[1]

(ii) Determine the resistance of this piece of wire.

resistance = Ω [1]

[Total: 10]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

I		II		Group															
				I				II				IV		V		VI		VII	
				1 H hydrogen 1															
Key	atomic number name relative atomic mass	atomic symbol	name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Li	3	Be	beryllium	7	8	9	10	B	C	N	O	F	Ne	11	12	13	14	15	16
Na	11	Mg	magnesium	23	24	25	26	Fe	Co	Cu	Zn	Ge	Kr	20	21	22	23	24	25
K	19	Ca	calcium	40	41	42	43	Mn	Ni	Ni	Ge	As	Kr	24	45	46	47	48	49
Rb	37	Sr	strontium	85	88	89	90	Mo	Ru	Rh	Pd	Sb	Xe	84	40	41	42	43	44
Cs	55	Ba	barium	137	56	57–71	72	Tc	Re	Os	Pt	Pb	At	86	45	46	47	48	49
Fr	87	Ra	radium	–	88	89–103	104	Hf	Ta	W	Ir	Bi	Rn	–	46	47	48	49	50
								Ta	Ta	Ta	Os	Hg	Bi		47	48	49	50	51
								hafnium	tantalum	tungsten	osmium	mercury	polonium		48	49	50	51	52
								178	181	184	190	201	209		178	181	184	190	192
								173	181	184	192	201	209		173	181	184	192	195
								104	105	106	107	108	109		104	105	106	107	108
								Rf	Db	Bh	Hs	Mt	F		89	90	91	92	93
								rutherfordium	dubnium	bohrium	hassium	meitnerium	lermorium		actinoids	actinium	protactinium	uraniun	neptunium
								–	–	–	–	–	–		–	–	–	–	–

57	La	58	Ce	59	Pr	60	Nd	61	Pm	62	Sm	63	Eu	64	Gd	65	Tb	66	Dy	67	Ho	68	Er	69	Tm	70	Yb	71		
	lanthanum		cerium	140	praseodymium	141	neodymium	144	promethium	–	samarium	150	europerium	152	gadolinium	157	terbium	159	dysprosium	163	holmium	165	erbium	167	thulium	169	ytterbium	173		
89	Ac	90	Th	91	Pa	92	U	93	Np	94	Pu	95	Am	96	Cm	97	Bk	98	Cf	99	Es	100	Fm	101	Md	102	No	103		
	actinium		thorium	232	protactinium	231	uraniun	238	neptunium	–	plutonium	–	americium	–	curium	–	berkelium	–	californium	–	einsteinium	–	curium	–	mendelevium	–	nobelium	–	lawrencium	–

The volume of one mole of any gas is 24 dm^3 at room temperature and pressure (r.t.p.).

