

# Cambridge International AS & A Level

| CANDIDATE<br>NAME |  |  |                     |  |  |
|-------------------|--|--|---------------------|--|--|
| CENTRE<br>NUMBER  |  |  | CANDIDATE<br>NUMBER |  |  |

# 200440434

### **FURTHER MATHEMATICS**

9231/21

Paper 2 Further Pure Mathematics 2

May/June 2023

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

### **INSTRUCTIONS**

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

### **INFORMATION**

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [ ].

This document has 16 pages. Any blank pages are indicated.

# **BLANK PAGE**

| 1 ( | (a) | Show | that the | system | of ec | uations |
|-----|-----|------|----------|--------|-------|---------|
|     |     |      |          |        |       |         |

$$x+2y+3z = 1,$$
  
 $4x+5y+6z = 1,$   
 $7x+8y+9z = 1,$ 

| does not have a unique solution.                                  |                                |
|-------------------------------------------------------------------|--------------------------------|
|                                                                   |                                |
|                                                                   |                                |
|                                                                   |                                |
|                                                                   |                                |
|                                                                   |                                |
|                                                                   |                                |
|                                                                   |                                |
| Show that the system of equations in part (a) is consistent. Inte | erpret this situation geometri |
|                                                                   |                                |
|                                                                   |                                |
|                                                                   |                                |
|                                                                   |                                |
|                                                                   |                                |
|                                                                   |                                |
|                                                                   |                                |
|                                                                   |                                |
|                                                                   | •••••                          |
|                                                                   |                                |
|                                                                   |                                |
|                                                                   |                                |
|                                                                   |                                |
|                                                                   |                                |

| • | TT 41 1 4"4 4"                           |                        | C 1  | 41    | 1 4       | C 41   | 1:00 4:1     | , •       |
|---|------------------------------------------|------------------------|------|-------|-----------|--------|--------------|-----------|
| , | $1 \le 6$ the cubefitution $7 - v \perp$ | 11 TO                  | tina | the   | COLLITION | Of the | differential | eatiation |
| 4 | Use the substitution $z = x +$           | $\nu$ $\iota \upsilon$ | umu  | uic i | outulull  | or the | unitolondar  | Cuudiion  |

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1+3x+3y}{3x+3y-1}$$

| for which $y = 0$ when $x = 1$ . Give your answer in the form $a \ln(x+y) + b(x-y) + c = 0$ , where $a$ , and $c$ are constants to be determined. | , <i>b</i><br>[7] |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   | •••               |
|                                                                                                                                                   |                   |
|                                                                                                                                                   | •••               |
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   | •••               |
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   | •••               |
|                                                                                                                                                   |                   |
|                                                                                                                                                   | •••               |
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   | •••               |
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   | •••               |
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   | •••               |
|                                                                                                                                                   |                   |
|                                                                                                                                                   | •••               |
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   | •••               |
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   | •••               |
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   | •••               |
|                                                                                                                                                   |                   |

| Use the substitution $x = \sin \theta$ | to find the exact va | alue of $\int_0^{\frac{1}{2}} (1-x^2)^{\frac{3}{2}} dx$ | r. |
|----------------------------------------|----------------------|---------------------------------------------------------|----|
| Use the substitution $x = \sin \theta$ | to find the exact va | alue of $\int_0^{\frac{1}{2}} (1-x^2)^{\frac{3}{2}} dx$ | ς. |
| Use the substitution $x = \sin \theta$ | to find the exact va | alue of $\int_0^{\frac{1}{2}} (1-x^2)^{\frac{3}{2}} dx$ | x. |
| Use the substitution $x = \sin \theta$ | to find the exact va | alue of $\int_0^{\frac{1}{2}} (1-x^2)^{\frac{3}{2}} dx$ | ν. |
| Use the substitution $x = \sin \theta$ | to find the exact va | alue of $\int_0^{\frac{1}{2}} (1-x^2)^{\frac{3}{2}} dx$ | v. |
| Jse the substitution $x = \sin \theta$ | to find the exact va | alue of $\int_0^{\frac{1}{2}} (1-x^2)^{\frac{3}{2}} dx$ | v. |
|                                        |                      |                                                         |    |
| Use the substitution $x = \sin \theta$ |                      |                                                         |    |
|                                        |                      |                                                         |    |
|                                        |                      |                                                         |    |
|                                        |                      |                                                         |    |
|                                        |                      |                                                         |    |
|                                        |                      |                                                         |    |
|                                        |                      |                                                         |    |
|                                        |                      |                                                         |    |
|                                        |                      |                                                         |    |

- 4 The integral  $I_n$  is defined by  $I_n = \int_0^1 (1+x^5)^n dx$ .
  - (a) By considering  $\frac{d}{dx}(x(1+x^5)^n)$ , or otherwise, show that

| $(5n+1)I_n = 2^n + 5nI_{n-1}.$ | [5] |
|--------------------------------|-----|
| <br>                           |     |
| <br>                           |     |
|                                |     |
|                                |     |
| <br>                           |     |
|                                |     |
|                                |     |
|                                |     |
| <br>                           |     |
| <br>                           |     |
| <br>                           |     |
| <br>                           |     |
|                                |     |
|                                |     |
| <br>                           |     |
|                                |     |

| <br> |
|------|
| <br> |
| <br> |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

| _ | 001  |        |   |    |        | •  |
|---|------|--------|---|----|--------|----|
| 5 | The  | matrix | Δ | 10 | orven  | hv |
| J | 1110 | mania  | 1 | 10 | 511011 | υy |

$$\mathbf{A} = \begin{pmatrix} 18 & 5 & -11 \\ 8 & 6 & -4 \\ 32 & 10 & -20 \end{pmatrix}.$$

|   | eigenvalues of A. |       |
|---|-------------------|-------|
|   |                   | •••   |
|   |                   |       |
|   |                   |       |
|   |                   |       |
|   |                   |       |
| • |                   |       |
| • |                   |       |
| • |                   |       |
|   |                   |       |
|   |                   |       |
|   |                   |       |
|   |                   |       |
|   |                   |       |
|   |                   |       |
|   |                   |       |
| • |                   |       |
| • |                   | •••   |
| • |                   |       |
|   |                   | • • • |
|   |                   |       |
|   |                   |       |
|   |                   |       |
|   |                   |       |
|   |                   |       |
|   |                   |       |

| •••••     |
|-----------|
| •••••     |
|           |
|           |
| <br>      |
|           |
|           |
| •••••     |
|           |
|           |
|           |
|           |
|           |
| •••••     |
|           |
|           |
|           |
|           |
|           |
| <br>      |
| <br>      |
|           |
|           |
|           |
|           |
| •••••     |
|           |
| <br>••••• |
|           |
|           |

|   | 10                                                                                           |
|---|----------------------------------------------------------------------------------------------|
| ] | Find the particular solution of the differential equation                                    |
|   | $\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - 12\frac{\mathrm{d}x}{\mathrm{d}t} + 36x = 37\sin t,$ |
|   | given that, when $t = 0$ , $x = \frac{dx}{dt} = 0$ .                                         |
|   |                                                                                              |
|   |                                                                                              |
|   |                                                                                              |
|   |                                                                                              |
|   |                                                                                              |
|   |                                                                                              |
|   |                                                                                              |
|   |                                                                                              |
|   |                                                                                              |
|   |                                                                                              |
|   |                                                                                              |
|   |                                                                                              |
|   |                                                                                              |
|   |                                                                                              |
|   |                                                                                              |
|   |                                                                                              |
|   |                                                                                              |
|   |                                                                                              |

| <br> |
|------|
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

| 7 (a) | Use the substitution $u = x^2 - 1$ to find $\int \frac{x}{\sqrt{x^2 - 1}} dx$ . | [3]     |
|-------|---------------------------------------------------------------------------------|---------|
|       |                                                                                 |         |
|       |                                                                                 |         |
|       |                                                                                 |         |
|       |                                                                                 |         |
|       |                                                                                 |         |
|       |                                                                                 |         |
|       |                                                                                 | N-1 N x |

The diagram shows the curve with equation  $y = \cosh^{-1}x$  together with a set of (N-1) rectangles of unit width.

**(b)** By considering the sum of the areas of these rectangles, show that

| $\sum_{r=2}^{N} \ln(r + \sqrt{r^2 - 1}) > N \ln(N + \sqrt{N^2 - 1}) - \sqrt{N^2 - 1}.$ | [5] |
|----------------------------------------------------------------------------------------|-----|
|                                                                                        |     |
| <br>                                                                                   |     |
|                                                                                        |     |
|                                                                                        |     |
|                                                                                        |     |
|                                                                                        |     |

| (c) | Use a similar method to find, in terms of $N$ , an upper bound for $\sum_{r=2}^{N} \ln(r + \sqrt{r^2 - 1})$ . [3] |
|-----|-------------------------------------------------------------------------------------------------------------------|
| (c) | Use a similar method to find, in terms of $N$ , an upper bound for $\sum_{r=2}^{N} \ln(r + \sqrt{r^2 - 1})$ . [3] |
| (c) | Use a similar method to find, in terms of $N$ , an upper bound for $\sum_{r=2}^{N} \ln(r + \sqrt{r^2 - 1})$ . [3] |
| (c) |                                                                                                                   |
| (c) | Use a similar method to find, in terms of $N$ , an upper bound for $\sum_{r=2}^{N} \ln(r + \sqrt{r^2 - 1})$ . [3] |
| (c) |                                                                                                                   |

|                  | $1 - \mathrm{sech}^2 t = \tanh^2 t.$                                                                        | [3 |
|------------------|-------------------------------------------------------------------------------------------------------------|----|
|                  |                                                                                                             |    |
|                  |                                                                                                             |    |
|                  |                                                                                                             |    |
|                  |                                                                                                             |    |
|                  |                                                                                                             |    |
| The curve $C$ ha | as parametric equations                                                                                     |    |
|                  | $x = \frac{1}{2}\tanh^2 t + \ln \operatorname{sech} t, \qquad y = 1 + \tanh^4 t, \qquad \text{for } t > 0.$ |    |
| (b) Show that    | $t \frac{\mathrm{d}y}{\mathrm{d}x} = -4 \mathrm{sech}^2 t.$                                                 | [5 |
|                  |                                                                                                             |    |
|                  |                                                                                                             |    |
|                  |                                                                                                             |    |
|                  |                                                                                                             |    |
|                  |                                                                                                             |    |
|                  |                                                                                                             |    |
|                  |                                                                                                             |    |
|                  |                                                                                                             |    |
|                  |                                                                                                             |    |
|                  |                                                                                                             |    |
|                  |                                                                                                             |    |
|                  |                                                                                                             |    |

|        |                                             |                                         |                                         |       | <br>      |       |
|--------|---------------------------------------------|-----------------------------------------|-----------------------------------------|-------|-----------|-------|
|        |                                             |                                         | <br>                                    |       | <br>      |       |
|        |                                             |                                         |                                         |       | <br>      |       |
|        | <br>                                        |                                         |                                         |       |           |       |
|        |                                             |                                         | • • • • • • • • • • • • • • • • • • • • |       | <br>      |       |
|        |                                             |                                         |                                         |       |           |       |
|        | •••••                                       | • • • • • • • • • • • • • • • • • • • • | <br>                                    | ••••• | <br>••••• |       |
|        | <br>                                        |                                         | <br>•••••                               | ••••• | <br>      | ••••• |
|        | <br>                                        |                                         | <br>                                    |       | <br>      |       |
|        | <br>                                        |                                         | <br>                                    |       | <br>      |       |
|        |                                             |                                         |                                         |       |           |       |
| •••••• | <br>• • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | <br>                                    | ••••• | <br>••••• |       |
|        | <br>                                        |                                         | <br>                                    |       | <br>      |       |
|        | <br>                                        |                                         | <br>                                    |       | <br>      |       |
|        | <br>                                        |                                         | <br>                                    |       | <br>      |       |
|        |                                             |                                         |                                         |       |           |       |
|        | <br>                                        |                                         | <br>                                    | ••••• | <br>      |       |
|        | <br>                                        | • • • • • • • • • • • • • • • • • • • • | <br>                                    |       | <br>      |       |

## Additional page

| If you use the following page to complete the answer to any question, the question number must be closhown. | early |
|-------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             | ••••• |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             | ••••• |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |
|                                                                                                             |       |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.