

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

1793694541

FURTHER MATHEMATICS

9231/23

Paper 2 Further Pure Mathematics 2

May/June 2023

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

BLANK PAGE

1	(a)	Find the Maclaurin series for $\sin^{-1}x$ up to and including the term in x^3 .	[5]
	(b)	Deduce an approximation to $\int_0^{\frac{1}{5}} \frac{1}{\sqrt{1-u^2}} du$, giving your answer as a fraction.	[1]

I he variables x and v are related by the differential equal	and y are related by the differential	equation
--	---------------------------------------	----------

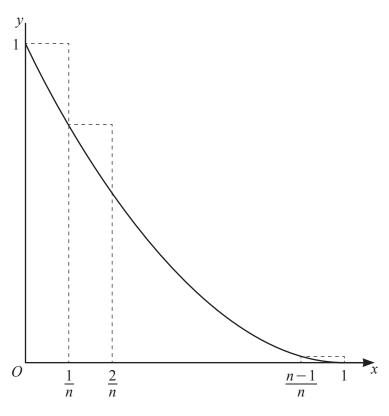
by the differential equation
$$6\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + x = t^2 + 10t + 13.$$

(a)	Find the general solution for x in terms of t .	[6]
(b)	State an approximate solution for large positive values of <i>t</i> .	[1]

3

	$\cot^4 \theta = \frac{\cos 4\theta + a\cos 2\theta + b}{\cos 4\theta - a\cos 2\theta + b},$	
where a and b are integers to	be determined.	[7

4	The	curve	C has	equation


	$4y^3 + (x+y)^6 = 109.$	
Show that, at the point $(-4,$	3) on C , $\frac{dy}{dx} = \frac{1}{17}$.	

(b)	Find the value of $\frac{\partial}{\partial x}$	$\frac{d^2y}{dx^2}$ at the point (-4, 3).	[5]
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••

	$2\cosh^2 x = \cosh 2x + 1.$	[3]
Find the solution of the di		
	fferential equation $\frac{dy}{dx} + 2y \tanh x = 1$ = 0. Give your answer in the form $y = f(x)$.	[8]
for which $y = 1$ when $x = 1$	$\frac{\mathrm{d}y}{\mathrm{d}x} + 2y \tanh x = 1$	
for which $y = 1$ when $x = 1$	$\frac{dy}{dx} + 2y \tanh x = 1$ = 0. Give your answer in the form $y = f(x)$.	
for which $y = 1$ when $x =$	$\frac{dy}{dx} + 2y \tanh x = 1$ = 0. Give your answer in the form $y = f(x)$.	
for which $y = 1$ when $x =$	$\frac{dy}{dx} + 2y \tanh x = 1$ = 0. Give your answer in the form $y = f(x)$.	
for which $y = 1$ when $x =$	$\frac{dy}{dx} + 2y \tanh x = 1$ = 0. Give your answer in the form $y = f(x)$.	
for which $y = 1$ when $x = 1$	$\frac{dy}{dx} + 2y \tanh x = 1$ = 0. Give your answer in the form $y = f(x)$.	
for which <i>y</i> = 1 when <i>x</i> =	$\frac{dy}{dx} + 2y \tanh x = 1$ = 0. Give your answer in the form $y = f(x)$.	
for which <i>y</i> = 1 when <i>x</i> =	$\frac{dy}{dx} + 2y \tanh x = 1$ = 0. Give your answer in the form $y = f(x)$.	
for which <i>y</i> = 1 when <i>x</i> =	$\frac{dy}{dx} + 2y \tanh x = 1$ = 0. Give your answer in the form $y = f(x)$.	

 ••••
•••••
•••••
•••••
•••••
•••••

6

The diagram shows the curve with equation $y = (1-x)^2$ for $0 \le x \le 1$, together with a set of n rectangles of width $\frac{1}{n}$.

(a) By considering the sum of the areas of these rectangles, show that $\int_0^1 (1-x)^2 dx < U_n$, where

$U_n = \frac{2n^2 + 3n + 1}{6n^2}.$	[5]

		ethod to fin				"	J_0		
				••••••	•••••	••••••		••••••	•••••
•••••		•••••		•••••	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••				•••••	•••••	••••••	••••••	••••••	••••••
•••••									
	•••••		•••••						
Show	that lim(<i>l</i>	$U_n - L_n =$	0.						
	$n\rightarrow\infty$	n n							
	••••••	•••••	••••••	•••••	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••		•••••						
•••••	••••••	•••••	••••••	•••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •		•••••		•••••	•••••		• • • • • • • • • • • • • • • • • • • •	

(a)	integral I_n , where n is an integer, is defined by $I_n = \int_0^{\frac{4}{3}} (1+x^2)^{\frac{1}{2}n} dx$. Find the exact value of I_{-1} giving your answer in the form $\ln a$, where a is an integer to	ł
	determined.	[2
		•••
		• • •
		•••
b)	By considering $\frac{d}{dx}(x(1+x^2)^{\frac{1}{2}n})$, or otherwise, show that	
(D)		-
	$(n+1)I_n = nI_{n-2} + \frac{4}{3} \left(\frac{5}{3}\right)^n.$	[:
		•••
		•••
		•••
		•••
		•••

Use the subs	titution $u = 2x$	to show that	$s = \frac{1}{2}I_1 \text{ an}$	d find the e	exact value	of s.	
	•••••						
•••••		•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	
							,
•••••	•••••				•••••		
• • • • • • • • • • • • • • • • • • • •	•••••				••••••		
	•••••						
		•••••				•••••	

8 The matrix **A** is given by

$$\mathbf{A} = \begin{pmatrix} a & -6a & 2a+2 \\ 0 & 1-a & 0 \\ 0 & 2-a & -1 \end{pmatrix}$$

where a is a constant with $a \neq 0$ and $a \neq 1$.

(a)	Show that the equation $\mathbf{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ has a unique solution and interpret this situation geometricall	y.
		3]
		•••
		•••
		•••
		••
		·
		•••
(b)	Show that the eigenvalues of A are a , $1-a$ and -1 .	2]
		· • •
		·
		•••
		•••

a matrix P and a diagonal matrix D such that $A^4 =$		
		• • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • •
		•••••
		• • • • • • • • • • • • • • • • • • • •
the characteristic equation of A to find A^4 in terms	of \mathbf{A} and a .	
		• • • • • • •

Additional page

If you use the following page to complete the answer to any question, the question number must be clashown.	early
	•••••
	•••••

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.