

Cambridge IGCSE™ (9-1)

CHEMISTRY
Paper 4 Theory (Extended)
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Cambridge IGCSE (9-1) - Mark Scheme

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2023 Page 2 of 10

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Science-Specific Marking Principles

- 1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly.
- 2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored.
- Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection).
- The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted.

5 <u>'List rule' guidance</u>

For questions that require *n* responses (e.g. State **two** reasons ...):

- The response should be read as continuous prose, even when numbered answer spaces are provided.
- Any response marked *ignore* in the mark scheme should not count towards *n*.
- Incorrect responses should not be awarded credit but will still count towards *n*.
- Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should not be
 awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this
 should be treated as a single incorrect response.
- Non-contradictory responses after the first *n* responses may be ignored even if they include incorrect science.

© UCLES 2023 Page 3 of 10

6 Calculation specific guidance

Correct answers to calculations should be given full credit even if there is no working or incorrect working, **unless** the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^n$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 Guidance for chemical equations

Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.

State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

© UCLES 2023 Page 4 of 10

Question	Answer	Marks
1(a)	В	1
1(b)	F	1
1(c)	D	1
1(d)	A AND E	1
1(e)	G	1
1(f)	C	1
1(g)	В	1
1(h)	F	1

Question				Answer	Marks
2(a)(i)		⁵⁹ Co	⁶⁵ Cu ²⁺		3
	protons	27	29		
	neutrons	32	36		
	electrons	27	27		
	one mark fo	r each corre	ect row		
2(a)(ii)	M1 (63 × 70) + (65 × 30) = 6360	(1)	2
	M2 6360 / 10	00 = 63.6	(1)		

Question	Answer	Marks
2(b)	M1 (high) density (1)	2
	M2 (high) melting point (1)	
2(c)(i)	M1 water molecules (1)	2
	M2 (the water present) in hydrated crystals (1)	
2(c)(ii)	M1 pink (1)	2
	M2 CoC l ₂ ·6H ₂ O (1)	
2(c)(iii)	M1 white (1)	2
	M2 blue (1)	
2(c)(iv)	heating (the hydrated copper(II) sulfate)	1

Question	Answer	Marks
3(a)	(hot) air	1
3(b)(i)	hematite	1
3(b)(ii)	$Fe_2O_3 + 3CO \rightarrow 3CO_2 + 2Fe$	1
3(b)(iii)	M1 from +3 (1)	2
	M2 to 0 (1)	
3(b)(iv)	decrease (in oxidation number)	1

© UCLES 2023 Page 6 of 10

Question	Answer	Marks
3(c)	M1 $CaCO_3 \rightarrow CaO + CO_2$ (1)	4
	M2 thermal decomposition (1)	
	M3 SiO ₂ + CaO \rightarrow CaSiO ₃ (1)	
	M4 acid-base reaction (1)	
3(d)(i)	alloy	1
3(d)(ii)	nickel / chromium	1
3(e)	hydrated iron(III) oxide	1
3(f)(i)	galvanising	1
3(f)(ii)	painting/greasing/coating with plastic	1
3(f)(iii)	M1 zinc more reactive (than iron) (1)	2
	M2 zinc corrodes / oxidises / reacts in preference to / instead of iron (1)	

Question	Answer	Marks
4(a)(i)	M1 lead nitrate (1)	2
	M2 soluble chloride e.g. sodium chloride (1)	
4(a)(ii)	$Pb^{2+}(aq) + 2Cl^{-}(aq) \rightarrow PbCl_2(s)$	3
	M1 PbCl ₂ as only product (1)	
	M2 Pb ²⁺ + 2Ct as only reactants (1)	
	M3 state symbols (1)	

Question	Answer	Marks
4(a)(iii)	M1 filter (1)	3
	M2 wash (the residue) using water (1)	
	M3 dry the residue between filter papers / in a warm place (1)	
4(b)(i)	mobile ions	1
4(b)(ii)	$2Ct \rightarrow Cl_2 + 2e^-$	2
	M1 any negative CI species losing electron(s) (1)	
	M2 correct ionic half equation (1)	
4(b)(iii)	M1 (damp) litmus (paper) (1)	2
	M2 is bleached / goes white (1)	
4biv	(shiny) grey AND solid	1

Question	Answer	Marks
5(a)	enthalpy change (of reaction)	1
5(b)(i)	M1 rate of reaction increases (1)	3
	M2 more (CC14) particles per unit volume (1)	
	M3 frequency of collisions between (CC14 and H2O) particles increases (1)	
5(b)(ii)	M1 (position of) equilibrium moves to left hand side (1)	2
	M2 more (gaseous) moles / molecules on right hand side (1)	

© UCLES 2023 Page 8 of 10

Question	Answer	Marks
5(b)(iii)	M1 Labels mark $CCl_4(g) + 2H_2O(g)$ on reactant line AND $CO_2(g) + 4HCl(g)$ on product line M2 Activation E mark upward arrow labelled E_a from energy level of reactants to top of 'hump'	3
	M3 Energy change mark one downward arrow labelled ΔH AND energy change starting from E level of reactants and finishing at E level of products	
5(b)(iv)	M1 minimum energy (1) M2 that colliding particles must have to react (1)	2
5(b)(v)	(decreased by adding) catalyst	1
5(c)	energy needed to break bonds in reactants M1 [$(4 \times 340) + (4 \times 460) = 3200 \text{ (kJ/mol)}$ (1) energy released when bond in carbon dioxide form M2 2 × 805 = 1610 (kJ/mol) (1) calculate H–Cl bond energy M3 3200 – (1610 + E(4H–Cl)) = – 130 E(4H–Cl) = 3330 – 1610 = 1720 (kJ/mol) (1)	4
	M4 $1720/4 = 430 \text{ (kJ/mol)}$ (1)	

© UCLES 2023 Page 9 of 10

Question	Answer	Marks
6(a)	M1 (same) general formula (1)	2
	M2 (contain the same) functional group (1)	
6(b)	-CH ₂ - unit	1
6(a)(i)	M1 alkenes (1)	3
6(c)(i)	M2 alkanes (1)	
	M3 carboxylic acids (1)	
6(c)(ii)	M1 propanoic acid (1)	2
	M2 displayed formula of propanoic acid (1)	
6(d)(i)	M1 working to give the mass of atoms shown in Fig 6.1 $103 - 14 - (2 \times 12) - (2 \times 16) - (4 \times 1)$ (= 29)	2
	M2 'R' = C_2H_5	
6(d)(ii)	proteins	1

© UCLES 2023 Page 10 of 10