

## **Cambridge International Examinations**

Cambridge International General Certificate of Secondary Education

PHYSICAL SCIENCE 0652/21

Paper 2 Multiple Choice October/November 2017

45 minutes

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

## **READ THESE INSTRUCTIONS FIRST**

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

DO NOT WRITE IN ANY BARCODES.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

## Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 16.

Electronic calculators may be used.



International Examinations

CAMBRIDGE

| 1 | Wh  | at is the name o         | f the | process by whi              | ich g  | as particle                      | s move         | to   | occupy all the available space? |
|---|-----|--------------------------|-------|-----------------------------|--------|----------------------------------|----------------|------|---------------------------------|
|   | A   | boiling                  |       |                             |        |                                  |                |      |                                 |
|   | В   | condensation             |       |                             |        |                                  |                |      |                                 |
|   | С   | diffusion                |       |                             |        |                                  |                |      |                                 |
|   | D   | evaporation              |       |                             |        |                                  |                |      |                                 |
| 2 | An  | atom of sodium           | cont  | ains 11 protons             | , 11   | electrons a                      | and 12 r       | neu  | trons.                          |
|   | Wh  | at is the nucleor        | nur   | mber of the aton            | n?     |                                  |                |      |                                 |
|   | Α   | 11                       | В     | 12                          | С      | 22                               | I              | D    | 23                              |
| 3 | Wh  | ich statement de         | escri | bes the formation           | on of  | the bonds                        | in mag         | nes  | sium chloride?                  |
|   | Α   | Chlorine atoms           | trar  | nsfer electrons to          | o ma   | ignesium a                       | itoms fo       | ormi | ing an ionic bond.              |
|   | В   | Magnesium ato            | ms    | and chlorine atc            | ms :   | share a pa                       | ir of ele      | ctro | ons forming a covalent bond.    |
|   | С   | Magnesium ato            | ms    | transfer electror           | ns to  | chlorine a                       | toms fo        | rmi  | ng a covalent bond.             |
|   | D   | Magnesium ato            | ms    | transfer electror           | ns to  | chlorine a                       | toms fo        | rmi  | ng an ionic bond.               |
| 4 | Wh  | ich statement ex         | plai  | ns why graphite             | con    | ducts elect                      | ricity?        |      |                                 |
|   | Α   | All of the electr        | ons   | in graphite are f           | ree t  | to move the                      | rough it       | s st | tructure.                       |
|   | В   | Each carbon a structure. | itom  | has three cov               | alen   | t bonds ai                       | nd one         | ele  | ectron free to move through the |
|   | С   | Graphite is a m          | etal  | and the outer s             | hell ( | electrons a                      | re free        | to r | move.                           |
|   | D   | The electrons in         | n the | e covalent bonds            | s are  | free to mo                       | ove thro       | ougl | h the structure.                |
| 5 | The | e formula of a ga        | lliun | n ion is Ga <sup>3+</sup> . |        |                                  |                |      |                                 |
|   | The | e formula of a su        | lfate | ion is $SO_4^{2-}$ .        |        |                                  |                |      |                                 |
|   | Wh  | at is the formula        | of g  | allium sulfate?             |        |                                  |                |      |                                 |
|   | Α   | GaSO <sub>4</sub>        | В     | Ga₂SO₃                      | С      | Ga <sub>2</sub> (SO <sub>4</sub> | ) <sub>3</sub> | D    | $Ga_3(SO_4)_2$                  |
|   |     |                          |       |                             |        |                                  |                |      |                                 |
|   |     |                          |       |                             |        |                                  |                |      |                                 |
|   |     |                          |       |                             |        |                                  |                |      |                                 |

**6** Chromium(III) oxide reacts with dilute nitric acid to give chromium(III) nitrate and water.

$$Cr_2O_3 \ + \ xHNO_3 \ \rightarrow \ yCr(NO_3)_3 \ + \ zH_2O$$

Which values of x, y and z balance the equation?

|   | х | у | Z |
|---|---|---|---|
| Α | 3 | 1 | 3 |
| В | 3 | 2 | 6 |
| С | 6 | 2 | 3 |
| D | 6 | 2 | 6 |

- 7 Which compound has the largest relative molecular mass,  $M_r$ ?
  - $A CO_2$
- B NO<sub>2</sub>
- C SiO<sub>2</sub>
- D  $SO_2$

8 The diagram shows wood burning in air.



Which two words describe what happens to the wood and the type of reaction taking place?

|   | wood is  | type of reaction |
|---|----------|------------------|
| Α | oxidised | endothermic      |
| В | oxidised | exothermic       |
| С | reduced  | endothermic      |
| D | reduced  | exothermic       |

**9** Hydrogen bromide gas reacts with water to produce an acidic solution.

The equation for the reaction is

$$HBr + H_2O \rightarrow H_3O^{\dagger} + Br^{-}$$

Which statement describes what happens during the reaction?

- A Bromine accepts an electron from the water.
- **B** Hydrogen bromide accepts a proton from the water.
- **C** Hydrogen bromide donates a proton to the water.
- **D** Hydrogen bromide loses an electron to the water.
- **10** Four methods of preparing salts are shown.
  - adding an excess of an insoluble carbonate to a dilute acid and removing the excess by filtration
  - 2 adding an excess of an insoluble metal oxide to a dilute acid and removing the excess by filtration
  - 3 precipitation
  - 4 titration using an acid and an alkali

The solubility of some lead compounds is shown.

| compound       | solubility |
|----------------|------------|
| lead carbonate | insoluble  |
| lead hydroxide | insoluble  |
| lead oxide     | insoluble  |
| lead nitrate   | soluble    |
| lead sulfate   | insoluble  |

Which methods could be used to make lead nitrate?


**A** 1 and 2

**B** 1 and 4

C 3 only

**D** 4 only

11 Which test is used to show that a gas is ammonia?



**12** An element Z has the electronic structure 2,8,5.

In which group in the Periodic Table is Z placed?

**A** 2

**B** 3

**C** 5

**D** 8

13 The elements in Group VI of the Periodic Table show the same trends as the elements in Group VII.

Which row describes the trend in melting point and density of the Group VI elements as the group is descended?

|   | melting point | density  |
|---|---------------|----------|
| Α | decrease      | decrease |
| В | decrease      | increase |
| С | increase      | decrease |
| D | increase      | increase |

**14** Bauxite and haematite are important ores.

Which metals do the ores contain?

|   | bauxite | haematite |
|---|---------|-----------|
| Α | Αl      | Cu        |
| В | Αl      | Fe        |
| С | Cu      | Αl        |
| D | Fe      | Cu        |

15 One of the reactions that occurs in a blast furnace is shown.

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

Which substance is the reducing agent?

- A CO
- B CO<sub>2</sub>
- **C** Fe
- **D**  $Fe_2O_3$

16 Which property of a metal makes it **not** suitable for aircraft bodies?

- A high density
- B high malleability
- C high strength
- **D** low reactivity

17 Nitrogen oxides are produced in a car engine.

Which process describes how the nitrogen oxides are catalytically removed in the exhaust fumes?

- **A** combustion
- **B** oxidation
- **C** reduction
- **D** thermal decomposition

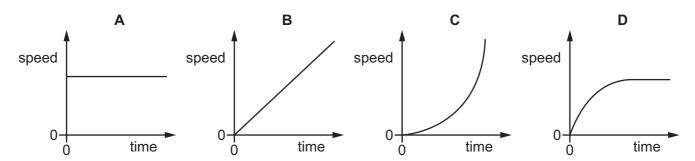
**18** Which row describes compounds in the same homologous series?

|   | chemical<br>properties | functional<br>group |
|---|------------------------|---------------------|
| Α | different              | different           |
| В | different              | the same            |
| С | similar                | different           |
| D | similar                | the same            |

19 When decane is heated over a catalyst, it breaks down to make octane and ethene.

Which name is given to this process?

- A cracking
- **B** distilling
- **C** polymerising
- **D** reducing


**20** Limonene is a colourless, unsaturated hydrocarbon found in lemons.

Which row describes the colour change when a few drops of limonene are shaken with bromine?

|   | colour of bromine at the start of experiment | colour of bromine after mixing with limonene |
|---|----------------------------------------------|----------------------------------------------|
| Α | colourless                                   | colourless                                   |
| В | colourless                                   | orange                                       |
| С | orange                                       | colourless                                   |
| D | orange                                       | orange                                       |

21 An object falls vertically in air, from rest, through a large distance. Air resistance acts on the object.

Which speed-time graph represents the motion of the object?



**22** A student does work by pulling a case across a horizontal floor.

She now pulls a second case along the same floor.

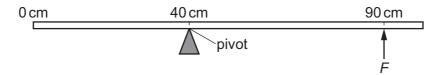
Which row indicates that the student is now doing twice as much work?

|   | force used<br>to pull case | distance the case is pulled |
|---|----------------------------|-----------------------------|
| Α | is doubled                 | is doubled                  |
| В | is doubled                 | is halved                   |
| С | stays the same             | is doubled                  |
| D | stays the same             | is halved                   |

23 A metal container has a mass of 200 kg.

The container is filled with 1.00 m<sup>3</sup> of a liquid. The total mass is now 1000 kg.

What is the density of the liquid?


- **A**  $0.00125 \, \text{kg/m}^3$
- **B**  $0.00500 \, \text{kg/m}^3$
- $\mathbf{C}$  800 kg/m<sup>3</sup>
- **D**  $1000 \, \text{kg/m}^3$

24 Which row correctly describes iron and lead?

|   | iron        | lead        |
|---|-------------|-------------|
| Α | ferrous     | ferrous     |
| В | ferrous     | non-ferrous |
| С | non-ferrous | ferrous     |
| D | non-ferrous | non-ferrous |

**25** A uniform metre rule of weight 2.0 N is pivoted at the 40 cm mark.

The rule is held in equilibrium by force *F* acting at the 90 cm mark.



What is F?

- **A** 0.22 N
- **B** 0.40 N
- C 0.89 N
- **D** 1.6 N

**26** An object of mass *m* moving with velocity *v* has kinetic energy *E*.

What is the kinetic energy of an object of mass 4.0 m moving with velocity 2.0 v?

- **A** 2.0 *E*
- **B** 4.0 *E*
- **C** 8.0 *E*
- **D** 16.0 *E*

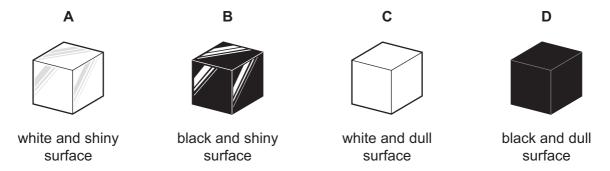
27 A power station uses nuclear fission to obtain energy.

In this process, nuclear energy is first transferred to

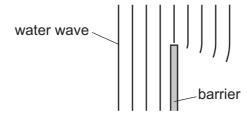
- **A** chemical energy.
- **B** electrical energy.
- **C** gravitational energy.
- **D** thermal (heat) energy.

**28** A student has two mercury-in-glass thermometers P and Q. They contain equal volumes of mercury.

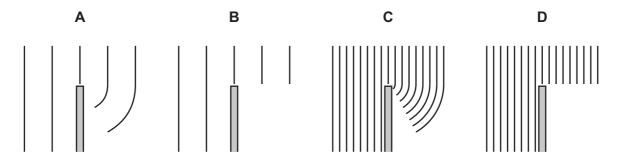
Thermometer Q has a longer stem and a wider capillary bore than thermometer P.


Which row compares the range and the sensitivity of thermometer Q with those of thermometer P?

|   | range of Q<br>compared with P | sensitivity of Q compared with P |
|---|-------------------------------|----------------------------------|
| Α | greater                       | greater                          |
| В | greater                       | smaller                          |
| С | smaller                       | greater                          |
| D | smaller                       | smaller                          |


29 The diagram shows four identical copper blocks. The blocks have been painted so that their surfaces are different.

All four blocks are heated to the same temperature, in the same room.

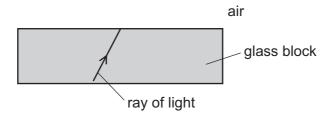

Which block cools the most slowly?



**30** The diagram shows a water wave being diffracted at the edge of a barrier.



Which diagram shows water waves of half the frequency being diffracted at the edge of the same barrier?

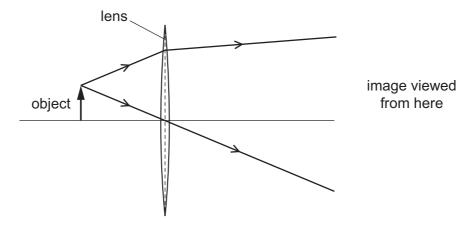



31 The table gives information about the approximate speed and range of wavelengths of waves.

Which row describes monochromatic microwaves in a vacuum?

|   | approximate speed | wavelengths                 |
|---|-------------------|-----------------------------|
| Α | 300 m/s           | all the same                |
| В | 300 m/s           | a range of different values |
| С | 300 000 km/s      | all the same                |
| D | 300 000 km/s      | a range of different values |

**32** A ray of light in a glass block strikes the edge of the block. The angle of incidence is much smaller than the critical angle.




What happens to this ray?

- **A** It is completely reflected.
- **B** It is completely refracted.
- **C** It is partially reflected and partially refracted.
- **D** It is refracted at an angle of refraction of 90°.
- **33** The diagram shows the paths of two rays from the top of an object.

The rays pass through a thin converging lens.

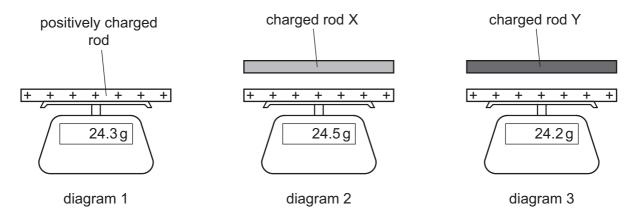
The image produced is viewed from the position shown.



What type of image is seen?

- A a real image that is larger than the object
- **B** a real image that is smaller than the object
- **C** a virtual image that is larger than the object
- **D** a virtual image that is smaller than the object

**34** Three objects, P, Q and R, vibrate with the frequencies shown and produce longitudinal waves in the air.


| object | frequency/Hz |
|--------|--------------|
| Р      | 25           |
| Q      | 1000         |
| R      | 15 000       |

Which of these waves can be heard by a human with normal hearing?

- A P, Q and R
- B P and Q only
- C P and R only
- **D** Q and R only
- **35** A positively charged insulating rod is placed on a balance. The reading on the balance is shown in diagram 1.

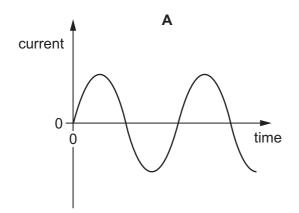
Two charged rods X and Y are now brought close to the positively charged rod in turn.

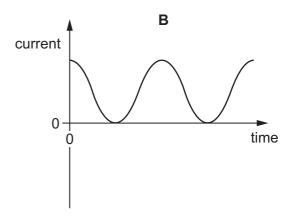
Diagram 2 and diagram 3 show the new reading on the balance in each case.

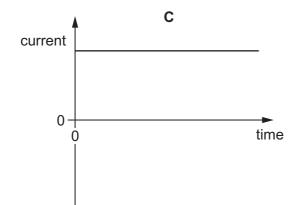


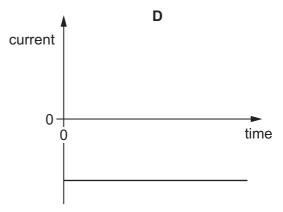
Which row gives the charges on rod X and rod Y?

|   | rod X    | rod Y    |
|---|----------|----------|
| Α | negative | negative |
| В | negative | positive |
| С | positive | negative |
| D | positive | positive |

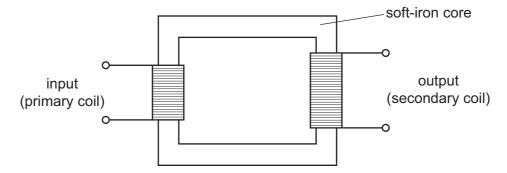

**36** A charger for a mobile phone (cell phone) supplies 50 mA of current to the phone battery for 30 minutes.


How much charge passes through the battery?


- **A** 1.5 C
- **B** 90 C
- **C** 1500 C
- **D** 90000 C
- 37 There is a current of 3.0 A in a resistor. The energy converted in the resistor is 540 J in 60 s.


What is the potential difference across the resistor?

- **A** 1.0 V
- **B** 3.0 V
- **C** 9.0 V
- **D** 180 V
- 38 Which graph represents an alternating current?










**39** The diagram represents a transformer.



Why is there an induced electromotive force (e.m.f.) across the secondary coil?

- **A** There is a changing magnetic field in the soft-iron core.
- **B** There is a direct current in the primary coil.
- **C** There is a direct current in the soft-iron core.
- **D** There is a steady magnetic field in the soft-iron core.
- **40** The emissions from a radioactive source pass through a sheet of lead, 10 mm thick.

Which row describes other properties of these emissions?

|   | ionising effect | deflection in an electric field |
|---|-----------------|---------------------------------|
| Α | strong          | from positive to negative       |
| В | strong          | no deflection                   |
| С | weak            | from positive to negative       |
| D | weak            | no deflection                   |

## **BLANK PAGE**

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

|       | III/ | 2 : | Не | helium<br>4   | 10            | Ne           | neon<br>20                   | 18 | Ā  | argon<br>40      | 36 | 궃  | krypton<br>84   | 54           | Xe       | xenon<br>131     | 98               | R           | radon           |                 |           |                    |                   |
|-------|------|-----|----|---------------|---------------|--------------|------------------------------|----|----|------------------|----|----|-----------------|--------------|----------|------------------|------------------|-------------|-----------------|-----------------|-----------|--------------------|-------------------|
|       | IIA  |     |    |               | 6             | ш            | fluorine<br>19               | 17 | Cl | chlorine<br>35.5 | 35 | ğ  | bromine<br>80   | 53           | Н        | iodine<br>127    | 85               | Αţ          | astatine<br>-   |                 |           |                    |                   |
|       | I    |     |    |               | 8             | 0            | oxygen<br>16                 | 16 | ഗ  | sulfur<br>32     | 34 | Se | selenium<br>79  | 52           | <u>e</u> | tellurium<br>128 | 84               | Ъ           | molod –         | 116             | ^         | livermorium<br>-   |                   |
|       | >    |     |    |               | 7             | z            | nitrogen<br>14               | 15 | ₾  | phosphorus<br>31 | 33 | As | arsenic<br>75   | 51           | Sp       | antimony<br>122  | 83               | Ξ           | bismuth<br>209  |                 |           |                    |                   |
|       | >    |     |    |               | 9             | ပ            | carbon<br>12                 | 14 | S  | silicon<br>28    | 32 | Ge | germanium<br>73 | 50           | Sn       | tin<br>119       | 82               | Pb          | lead<br>207     | 114             | ŀΙ        | flerovium          |                   |
|       | ≡    |     |    |               | 2             | М            | boron<br>11                  | 13 | Αl | aluminium<br>27  | 31 | Ga | gallium<br>70   | 49           | In       | indium<br>115    | 81               | 11          | thallium<br>204 |                 |           |                    |                   |
|       |      |     |    |               |               |              |                              |    |    |                  | 30 | Zu | zinc<br>65      | 48           | ပ        | cadmium<br>112   | 80               | Нg          | mercury<br>201  | 112             | S         | copernicium<br>-   |                   |
|       |      |     |    |               |               |              |                              |    |    |                  | 29 | Cn | copper<br>64    | 47           | Ag       | silver<br>108    | 62               | Αn          | gold<br>197     | 111             | Rg        | roentgenium<br>-   |                   |
| Group |      |     |    |               |               |              |                              |    |    |                  |    | 28 | z               | nickel<br>59 | 46       | Pd               | palladium<br>106 | 78          | చ               | platinum<br>195 | 110       | Ds                 | darmstadtium<br>- |
| Gro   |      |     |    |               |               |              |                              |    |    |                  | 27 | ဝိ | cobalt<br>59    | 45           | 牊        | rhodium<br>103   | 77               | Ir          | iridium<br>192  | 109             | Mt        | meitnerium<br>-    |                   |
|       |      | F : | I  | hydrogen<br>1 |               |              |                              |    |    |                  | 26 | Ьe | iron<br>56      | 44           |          | -                |                  | SO          | osmium<br>190   | 108             | Hs        | hassium<br>–       |                   |
|       |      |     |    |               |               |              |                              |    |    |                  | 25 | M  | manganese<br>55 | 43           | ပ        | technetium<br>-  | 75               | Re          | rhenium<br>186  |                 |           | bohrium<br>–       |                   |
|       |      |     |    |               | _             | pol          | ass                          |    |    |                  | 24 | ပ် | chromium<br>52  | 42           | Mo       | molybdenum<br>96 | 74               | ≥           | tungsten<br>184 | 106             | Sg        | seaborgium<br>-    |                   |
|       |      |     |    | Key           | atomic number | atomic symbo | name<br>relative atomic mass |    |    |                  | 23 | >  | vanadium<br>51  | 41           | g        | niobium<br>93    | 73               | <u>a</u>    | tantalum<br>181 | 105             | В         | dubnium<br>–       |                   |
|       |      |     |    |               |               | ato          | rek                          |    |    |                  | 22 | i= | titanium<br>48  | 40           | Zr       | zirconium<br>91  | 72               | 士           | hafnium<br>178  | 104             | 꿆         | rutherfordium<br>— |                   |
|       |      |     |    |               |               |              |                              |    |    |                  | 21 | လွ | scandium<br>45  | 39           | >        | yttrium<br>89    | 57–71            | lanthanoids |                 | 89-103          | actinoids |                    |                   |
|       | =    |     |    |               | 4             | Be           | beryllium<br>9               | 12 | Mg | magnesium<br>24  | 20 | Ca | calcium<br>40   | 38           | ഗ്       | strontium<br>88  | 99               | Ba          | barium<br>137   | 88              | Ra        | radium<br>-        |                   |
|       | _    |     |    |               | ဇ             | =            | lithium<br>7                 | 1  | Na | sodium<br>23     | 19 | ¥  | potassium<br>39 | 37           | В        | rubidium<br>85   | 55               | S           | caesium<br>133  | 87              | Ŧ         | francium<br>-      |                   |

| 71                                      | Lu<br>lutetium<br>175  | 103 | ۲         | lawrencium   | ı   |
|-----------------------------------------|------------------------|-----|-----------|--------------|-----|
|                                         | TD<br>ytterbium<br>173 |     |           |              |     |
| 69<br><b>E</b>                          | thulium<br>169         | 101 | Md        | mendelevium  | ı   |
| 88<br>1                                 | erbium<br>167          | 100 | Fm        | fermium      | I   |
| 29                                      | holmium<br>165         | 66  | Es        | einsteinium  | ı   |
| 99                                      | dysprosium<br>163      | 86  | ర్        | califomium   | ı   |
| 65<br><b>A</b> F                        | terbium<br>159         | 26  | 益         | berkelium    | I   |
| 64                                      | gadolinium<br>157      | 96  | Cm        | curium       | I   |
| 63                                      | Eu<br>europium<br>152  | 98  | Am        | americium    | I   |
| 62                                      | Samarium<br>150        | 94  | Pu        | plutonium    | ı   |
| 61                                      | promethium             | 93  | dN        | neptunium    | I   |
| 09                                      | neodymium<br>144       | 92  | $\supset$ | uranium      | 730 |
| 59                                      | praseodymium<br>141    | 91  | Ра        | protactinium | 167 |
| 88 6                                    | Cerium<br>140          | 06  | T         | thorium      | 707 |
| 22                                      | lanthanum<br>139       | 68  | Ac        | actinium     | I   |
| ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) | lanulanonus            |     | actinoids |              |     |

The volume of one mole of any gas is  $24\,\mathrm{dm}^3$  at room temperature and pressure (r.t.p.).