

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

PHYSICAL SCIENCE

0652/31

Paper 3 Theory (Core)

October/November 2020

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 A mixture contains four components.

Table 1.1 gives information about the four components of this mixture.

Table 1.1

component	information
ethanol	colourless liquid dissolves in water boils at 78°C
salt	white solid soluble in water
sand	off-white solid does not dissolve in water or ethanol
water	colourless liquid boils at 100 °C

Fig. 1.1 shows a method of separating one component from the mixture.



Fig. 1.1

(a)	(i)	Name the component collected as the residue on the filter paper.						
		[1]						
	(ii)	One sample of the filtrate is distilled.						
		Name the first component collected from the distillation.						
		Give a reason for your answer.						
		component						
		reason						
		[2]						

	(iii)	Another sample of the filtrate is evaporated to dryness.	
		Name the component left behind.	
			[1]
(b)	Des	scribe a test to show that the original mixture contains water.	
	test	t	
	pos	sitive result	
			[2]
		[Tota	ıl: 6]

2 Fig. 2.1 shows the motion of a car on a straight horizontal road.

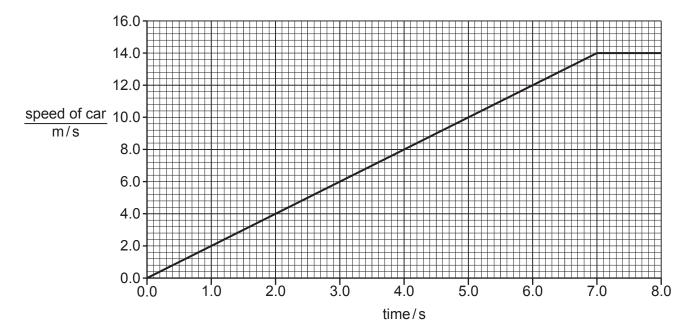


Fig. 2.1

(a)	Des	cribe	the mo	tion of	the ca	r during	g the fi	rst 7.0 s	-				
										 	 		. [2
(b)	Use	Fig. 2	2.1 to c	letermi	ine:								
	(i)	the s	peed c	f the c	ar at 5.	0s							
								speed	=	 	 	m/s	s [1

the distance travelled by the car in the first 6.0 s.

distance = m [2]

(c) Lights are used to stop cars to allow people to cross the road safely.

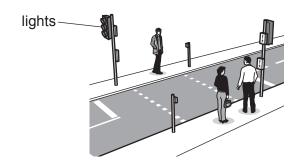


Fig. 2.2

Table 2.1 shows the walking speeds of four different people A, B, C and D.

Table 2.1

person	average walking speed m/s
Α	1.6
В	1.4
С	0.8
D	1.0

(i)	State which person takes most time to cross the road.
	[1]
(ii)	The road is 8.0 m wide.
	Calculate the time taken for the person given in your answer to (i) to cross the road.
	time = s [2]
	ume – 5 [2]
(iii)	Suggest why the lights stop the cars for more time than is needed for the slowest person to cross the road.
	[1]
	[Total: 9]
	[10tal. 9]

3 Sodium is an element in Group I of the Periodic Table.

Table 3.1 gives some information about an atom of sodium.

Table 3.1

number of electrons	11
number of protons	
nucleon number	23
number of neutrons	

(a) Use the information in Table 3.1 to determine the values of the missing	ı numbers.
---	------------

Record these values in Table 3.1.

[2]

(b) Write the electronic structure of an atom of sodium to show the number of electrons in each shell.

.....[2]

- (c) Sodium reacts with chlorine to form the ionic compound, sodium chloride.
 - (i) Balance the equation for this reaction.

..... Na + C
$$l_2 \, \longrightarrow \,$$
 NaC l

[1]

(ii) Complete Table 3.2 to give the names and formulae of the two ions in sodium chloride.

Table 3.2

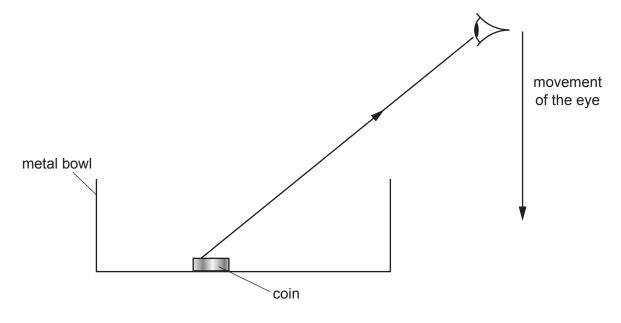
name of ion	formula of ion

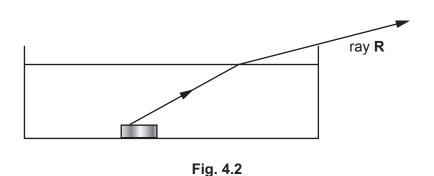
[2]

[Total: 7]

4 (a) A student observes a coin in a metal bowl.

A ray of light from the coin enters the student's eye, as shown in Fig. 4.1.




Fig. 4.1

The student moves his eye down until he can no longer see the coin.

On Fig. 4.1, draw another ray of light from the coin to the position of the eye just before the coin disappears from view. [1]

(b) The bowl is filled with water.

The ray of light **R** from the coin leaves the surface of the water as shown in Fig. 4.2.

On Fig. 4.2:

- 1. draw the normal where ray **R** leaves the water
- 2. label the angle of incidence with *i*.

[2]

(c) Fig. 4.3 shows an image of an object.

The image is produced by a lens.

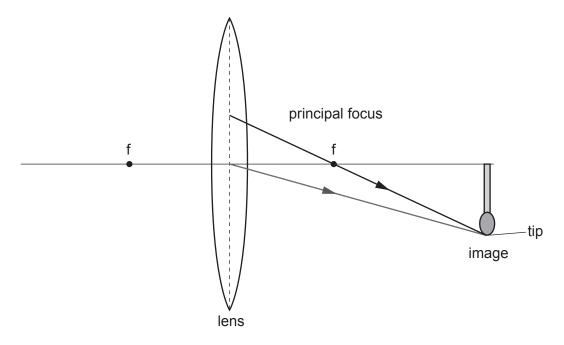


Fig. 4.3

(i)	Name the type of lens shown.	
		[1]
(ii)	On Fig. 4.3, extend the two rays backwards until they cross.	[2]
(iii)	On Fig. 4.3, draw the object and label it O .	[2]
	[Total	: 8]

Carbon is an element which exists in different forms.

5

Gra	aphite	e is one of these forms.
(a)	(i)	Describe the structure of graphite.
		[2]
	(ii)	Graphite is a good thermal conductor.
		Describe one other property of graphite.
		[1]
(b)	Nar	ne another form of carbon.
		[1]
(c)	Car	bon is used as a fuel when it burns in air.
	(i)	Name the gas found in air which reacts with carbon.
		[1]
	(ii)	Write a word equation for this reaction.
		[1]
(d)	Nar	ne a metal that can be extracted from its ore using carbon.
		[1]
(e)	Car	bon forms compounds with hydrogen.
	(i)	Give the name and formula of the compound of carbon and hydrogen which contains only one carbon atom.
		name
		formula[2]
	/i:\	
	(ii)	Give the name used to describe compounds which contain carbon and hydrogen only.
		[1]
		[Total: 10]

6 Four radioactive sources are investigated.

Each source is placed in front of a detector, as shown in Fig. 6.1, and left for one minute.

After one minute the count is recorded.

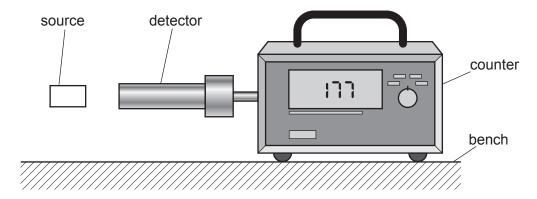


Fig. 6.1

The measurement is repeated with different absorbing materials placed between the source and the detector, as shown in Fig. 6.2.

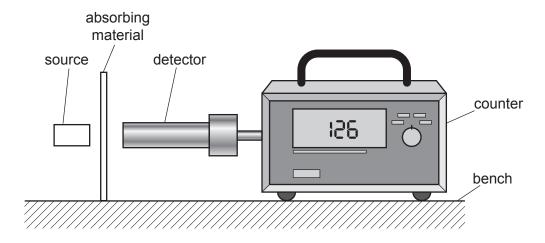


Fig. 6.2

The counts for one minute using different absorbing materials are shown in Table 6.1.

Table 6.1

source	count with no absorbing material	count for thin paper	count for thin metal foil	count for thick steel
Α	902	899	26	24
В	906	524	522	130
С	900	25	22	28
D	909	912	901	247

(a)	Thr	ree of the sources each emit one type of radia	ation o	nly.			
	The	e other source emits two types of radiation.					
	Circ	cle the letter corresponding to the source which	ch emi	ts:			
	•	gamma radiation only	Α	В	С	D	
	•	alpha radiation only	Α	В	С	D	
	•	more than one type of radiation.	Α	В	С	D	[3]
(b)		e the data in Table 6.1 to deduce an approxim e experiment is repeated using exactly the sal				_	
(-)		o onponing in opening on a only and on					
	All	the counts are different in this repeated exper	riment.				
	Sor	me are slightly higher and some are slightly lo	wer.				
	Sta	ite why the counts are different.					
							[1]
							[Total: 5]

7 (a) Electrolysis is used to break down ionic compounds.

Complete Table 7.1.

Table 7.1

lonic compound electrolysed	anode product	cathode product
molten lead bromide	bromine	
dilute sulfuric acid		hydrogen

[2]

(b) Fig. 7.1 shows how some metals react with dilute sulfuric acid.

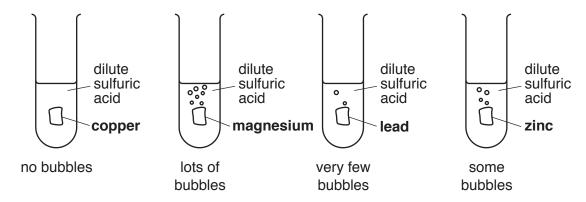


Fig. 7.1

Use Fig. 7.1 to determine the order of reactivity of these four metals.

[2]

[Total: 4]

8 Fig. 8.1 shows a dumper truck full of sand.

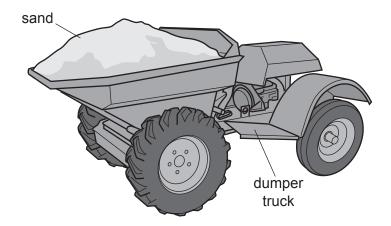


Fig. 8.1

The mass of the sand is 800 kg.

(a) (i) The density of sand is 1600 kg/m³.Calculate the volume of the sand.

uses (more / the same / less) power.

		volume of sand = m ³	[2]
	(ii)	Calculate the weight of the sand and state the unit. $[g = 10 \mathrm{N/kg}]$	
		weight of sand =unitunit	[2]
(b)	The	dumper truck carries the sand to the top of the hill.	
	(i)	State the form of energy gained by the sand.	
			[1]
	(ii)	The dumper truck uses diesel fuel. State the type of energy stored in the fuel.	
			[1]
(c)	Circ	le the correct underlined word or phrase to complete the following sentence.	

When the dumper truck moves the same weight of sand to the top of the hill in less time, it

[1]

(a)	The	e formula of ammonium nitrate is NH ₄ NO ₃ .	
	(i)	State the number of nitrogen atoms in the formula of ammonium nitrate.	
			[1]
	(ii)	State the total number of atoms in the formula of ammonium nitrate.	
			[1]
(b)	Amı	monium nitrate is made by neutralising an acid with aqueous ammonia.	
	(i)	Name the acid used.	
			[1]
	(ii)	Describe a test to show the acid is neutralised.	
		test	
		positive result	[2]
(c)	Amı	monium nitrate is added to soil as a fertiliser.	
	Far	mers also add limestone to soil even though it is not a fertiliser.	
	Ехр	plain why limestone is added to soil .	
			[2]
]	Total: 7]

10	A gi	irl rubs a balloon on h	er hair.			
	The	balloon becomes ne	gatively charged.			
	(a)	Explain in terms of n	novement of particles	s why the balloon is	negatively charged.	
						[2]
	(b)	A second balloon is	charged in the same	way.		
		The two balloons are	e suspended near ea	ach other using nylo	n thread.	
		Fig. 10.1 shows som	e ways in which the	balloons may hang	when they are suspend	ded.
		(i) Circle the diagra	am which shows hov	v the balloons hang.		[1]
		diagram A	diagram B	diagram C	diagram D	
			Fig	. 10.1		
		(ii) Explain why the	balloons hang in thi	s way.		
						[1]
	(c)	The girl's hair also negatively charged b	_		balloon on her hair. O ad.	ne of the
		Circle the diagram in	Fig. 10.2 which sho	ws how the balloon	hangs and affects her	hair.
		Give a reason for yo	ur choice.			
		diagram P	diagram Q	diagram R	diagram S	
			Fig	. 10.2		
		Reason				
						[2]

[Total: 6]

11 Ethene, C ₂ H ₄ , is an unsaturated compound.								
	(a)	Stat	te why ethene is described as an <i>unsaturated</i> compound.					
				[2]				
	(b)	Ethe	ene is obtained from petroleum using a two stage process.					
		(i)	stage 1: petroleum is separated into its components.					
			Name the process used in stage 1.					
				[1]				
		(ii)	stage 2: one of the components from stage 1 is used to produce ethene.					
			Name the process used in stage 2.					
				[1]				
	(c)	Dra	w the structure of ethene showing all of the atoms and all of the bonds.					

[2]

[Total: 6]

12 Fig. 12.1 shows a simple loudspeaker.

A coil of insulated wire is taped to a plastic sheet. The sheet is then attached to a paper cup containing a bar magnet.

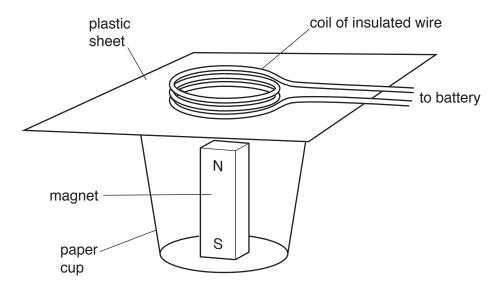


Fig. 12.1

(a)	(i)	When the coil is connected to a battery, the plastic sheet moves upwards.	
		Explain why the plastic sheet moves upwards.	
			[2]
	(ii)	The connections to the battery are reversed so that the current is reversed.	
		Explain why the plastic sheet now moves down.	
			[1]
(b)	The	coil is connected to an a.c. supply.	
	The	current changes direction 50 times each second.	
	Ехр	lain how the plastic sheet produces a sound.	
			[2]

[Total: 5]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

		=	2 He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon			
		II/			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	н	iodine 127	85	Αţ	astatine -			
		5			8	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ро	polonium –	116	^	livermorium -
		>			7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	E	bismuth 209			
		2			9	ပ	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	F1	flerovium -
		=			2	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
											30	Zu	zinc 65	48	ပ္ပ	cadmium 112	80	Нg	mercury 201	112	ű	copernicium
2											29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
	Group										28	Ë	nickel 59	46	Pd	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium -
	Gro										27	ဝိ	cobalt 59	45	몺	rhodium 103	77	'n	iridium 192	109	¥	meitnerium
2			- I	hydrogen 1							56	Fe	iron 56	44	Ru	ruthenium 101	9/	Os	osmium 190	108	H	hassium
											25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
						pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	ā	tantalum 181	105	Ср	dubnium –
					10	ato	rela				22	j	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	꿆	rutherfordium -
								,			21	လွ	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
		=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium
		_			3	:=	lithium 7	#	Na	sodium 23	19	¥	potassium 39	37	В	rubidium 85	55	Cs	caesium 133	87	Ļ	francium

71 Lu	175	103	۲	lawrencium	ı
70 Yb ytterbium	173	102	8	nobelium	ı
69 Tm	169	101	Md	mendelevium	ı
68 Er	167	100	Fm	ferminm	ı
67 HO	165	66	Es	einsteinium	I
66 Dy dysprosium	163	86	ర్	californium	1
65 Tb	159	97	Ř	berkelium	1
64 Gd gadolinium	157	96	Cm	curium	1
63 Eu	152	92	Am	americium	1
62 Sm	150	94	Pn	plutonium	ı
61 Pm promethium	ı	93	ď	neptunium	1
60 Nd	144	92	\supset	uranium	238
59 Pr	141	91	Ра	protactinium	231
58 Ce	140	06	┖	thorium	232
57 La	139	68	Ac	actinium	1

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).