COMBINED SCIENCE
 0653/62

Paper 6 Alternative to Practical
March 2017
MARK SCHEME
Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

PUBLISHED

Question	Answer					Marks
1(a)	reagent	Benedict's	biuret	iodine solution		3
	nutrient tested for	reducing sugar ;	protein ;	starch ;		
1(b)	reagent Benedict's solution \mathbf{A} yellow/green/orange/red		biuret	iodine solution		max 3
			blue	blue-black		
	solution B blue ; (mark vertically i.e. colours correct for both)		lilac ;	blue-black ;		
1(c)	wore goggles/tied back hair/used tongs and chemical tests or hot water ;					max 1
1(d)	(dissolve in) ethanol and water added ; no naked flames (ignore other safety precautions) ; cloudy/emulsion ;					3
					Total:	10

Question	Answer				Marks
2(a)	add water and stir ; filter mixture ; diagram with at least two labels ;				3
2(b)(i)	no bubbles/no effervescence ;				1
2(b)(ii)	chloride ;				1
2(b)(iii)	test	observations	conclusion about cation		3
	1 (add sodium hydroxide solution)	no ppt. ;	$\left(\right.$ not $\left.\mathrm{Cu}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Zn}^{2+}\right)$		
	2 (heat the mixture from test 1 and test any gases with damp litmus papers)	red to blue ;	ammonium $/ \mathrm{NH}_{4}{ }^{+}$;		
2(c)(i)	reacts quicker ;				1
2(c)(ii)	dark blue (solution) ;				1
				Total:	10

Question	Answer	Marks
3(a)	$1.2(\mathrm{~V}) ;$ $0.18(\mathrm{~A}) ;$	$\mathbf{2}$
3(b)(i)	$5.2 / 5.24$ and $6.7 / 6.67 ;$ both R values consistent to $2 / 3$ significant figures ;	$\mathbf{2}$
3(b)(ii)	$11.9(\Omega) ;$ ecf (i)	$\mathbf{1}$
3(c)(i)	correct series connection ; voltmeter position unchanged ;	$\mathbf{2}$
3(c)(ii)	$8.1(3)$ c.a.o. ;	$\mathbf{1}$
3(d)	(statement matching results - expect NO) results used for justification with reference to the idea of experimental accuracy ;	$\mathbf{1}$
3(e)	resistance changes/wires get hot/bulbs get hot/battery runs down ;	max $\mathbf{1}$
		$\mathbf{T o t a l :}$

Question	Answer		Marks
4(a)	time and minutes ; pulse rate/beats and 15 seconds;		2
4(b)(i)	41 and 44 ;		1
4(b)(ii)	148 and 164 ;		1
4(c)	axes labelled with units; suitable linear scale using at least half the grid ; at least 4 points plotted correctly ; best-fit curve ;		4
4(d)	increases;		1
4(e)	correct reading from graph as marked ;		1
		Total:	10

Question	Answer		Marks
5(a)	any 3 from: copper doesn't react with acid ; delivery tube is under level of liquid in conical flask/cannot gather gas ; no bung in conical flask/gas escapes out of top of conical flask ; measuring cylinder should be underwater/should contain water/cannot collect gas;		max 3
5(b)(i)	$4 ;$ slower reaction/takes more time;		2
5(b)(ii)	1 ; twice as much gas ;		2
5(c)	same/ $30 \mathrm{~cm}^{3}$ and same amount of metal/metal in excess ;		1
5(d)	heat or evaporating dish/beaker and burner ;		max 1
5(e)	lighted splint and pop ;		1
		Total:	10

Question	Answer	Marks
6(a)(i)	15.4 (cm) ;	1
6(a)(ii)	$15.4 \div 10=1.54$;	1
6(a)(iii)	$\begin{aligned} & \frac{\pi(1.54)^{2}}{4} \\ & =1.86\left(\mathrm{~cm}^{2}\right) ; \end{aligned}$	1
6(b)(i)	3.1 (cm) ;	1
6(b)(ii)	5.8/5.77 (cm^{3}) ;	1
6(c)	55.0 (g) ;	1
6(d)	55.0/5.77 $=9.5(3)\left(\mathrm{g} / \mathrm{cm}^{3}\right)$;	1
6(e)	idea that it allows more accurate measurement as uncertainty is a smaller percentage/fraction of measurement ;	1
6 (f)	the volume calculated will be too large ; so this will make the value of the density too small ;	2
	Total:	10

